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We show explicitly that the range of multifractality of random walks and localized vibrational excitations on
random fractals depends crucially on the numberNav of configurations involved in the averaging procedure. By
studying analytically and numerically the moments^Pq(r ,t)&Nav of the probability density of random walks on
random walk trails and percolation clusters at criticality, averaged overNav configurations, we find that for
fixed distancer and timet multifractality occurs only forq values below a critical valueqc(Nav) that increases
logarithmically withNav. We predict similar features for the moments of the amplitudes^Cq(r ,v)&Nav of
localized vibrational excitations.@S1063-651X~96!08910-6#

PACS number~s!: 05.40.1j, 63.50.1x

I. INTRODUCTION

In recent years, it has been shown that several physical
quantities describing dynamical properties of random sys-
tems do not obey the conventional scaling laws. Recent ex-
amples are the electronic eigenstates near the center of the
Landau band@1,2#, the amplitudes of localized vibrational
excitations@3# as well as the probability density of random
walks @4# on percolation clusters, and the voltage drops on a
bond percolation network@5#. All these quantities have in
common that they are characterized by a very broad distri-
bution, such that their moments cannot be described by a
single exponent but an infinite hierarchy of exponents is
needed to characterize them. This feature is called multifrac-
tality ~for reviews see, e.g.,@6#!.

In this paper we mainly concentrate on random walks on
random fractals and study both analytically and numerically
how theaveraging procedureinfluences the multifractal fea-
tures. We investigate the spatial distribution of random walks
on the random fractals by calculating theqth moment
^Pq(r ,t)&Nav of the probability to find the random walker,

after t time steps, on a site at distancer from its starting
point. The averagê &Nav is performed overNav configura-
tions.

Previous work on the subject@4# did not consider the role
of the averaging procedure. It was suggested that, apart from
very small and very largeq values,^Pq(r ,t)&;^P(r ,t)&t(q)

with

t~q!;qg and g5
~dw /dmin!21

~dw21!dmin
,1. ~1!

Here,dw describes how the root mean square displacement
of the random walker̂R(t)&;t1/dw changes with time. The
exponentdmin is called fractal dimension of the minimum
path and describes how the lengthl of the shortest path
connecting two points on the fractal~‘‘chemical’’ distance!
scales with the Euclidean distancer between them,
^l (r )&;r dmin. Similar multifractal features with
t(q);q1/dmin were obtained for the moments of the vibra-

tional amplitudes of localized vibrational excitations~‘‘frac-
tons’’! on percolation clusters@3#.

Here we show that in both cases the hierarchy of expo-
nentst(q) depends explicitly on the number of configura-
tions taken into account in the averages. There exists a criti-
cal q value qc(Nav) that increases logarithmically with
Nav. Below qc(Nav), we find multifractal behavior with
t(q) from ~1!. Aboveqc(Nav), we find unifractal behavior,
i.e., t(q)5q. Our considerations include also the case of
‘‘typical’’ averages, which formally correspond toNav51,
and therefore are described by our analytical results for
Nav51.

The paper is divided into three parts. In the first part~Sec.
II ! we discuss random walks on linear fractal structures gen-
erated by random walks~RW trails! and test numerically the
analytic results, which are rigorous in this case. In Sec. III
we extend the approach to random walks on percolation clus-
ters and present numerical simulations ford52,3, and the
Cayley-tree. In Sec. IV, finally, we discuss how our results
for random walks on random fractals can be applied to lo-
calized vibrational excitations on random fractals.

II. RANDOM WALKS ON RW TRAILS

The trace of a random walk in high-dimensional lattices
constitutes the simplest random fractal structure with
dmin52 anddw54 ~see, e.g.,@6,7#!. Although the trace can
intersect with itself in space, only those sites of the trace are
considered as connected that have been created sequentially
by the random walk. This way the RW trail can be viewed as
a topologically linear structure.

We consider a random walker on this structure. The prob-
abilitiesPi(r ,t) to find a random walker~after t time steps!
on sitesi at distancer from the starting point of the walk
may have very different values. Theqth moment, for a given
configuration, is defined by

Pq~r ,t ![
1

N~r ! (
i51

N~r !

Pi
q~r ,t !, ~2!
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whereN(r ) is the number of sites at distancer from the
origin of the walk. Along the trail, in ‘‘chemical’’ space, the
probability of finding the random walker on a sitei at
‘‘chemical’’ distancel from the origin is~trivially ! indepen-
dent of the considered trail configuration in space and for
t@l given by a Gaussian,

P~ l ,t !;exp@2„l /L~ t !…2#, L~ t !5A2t. ~3!

Hence the moments, in chemicall space, are simply

Pq~ l ,t !;exp@2q„l /L~ t !…2#[exp@2„l /Lq~ t !…
2#,

Lq~ t ![L~ t !/Aq. ~4!

Assuming that among theN(r ) sites at spatial distancer
from the origin there areN(l ,r ) sites at chemical distance
l , ~2! can be written as a sum over sites having the same
l values@4,8#,

Pq~r ,t !5(
l

N~ l ,r !

N~r !
Pq~ l ,t !. ~5!

Averaging overNav configurations and replacing the sum
over l by an integral yields the desired relation between the
moments of the probability densities inr and inl space~see
also @8#!,

^Pq~r ,t !&Nav5E
l min~r ,Nav!

`

f~ l ur !Pq~ l ,t !dl . ~6!

Heref(l ur ) is the probability that two sites at Euclidean
distancer from each other are separated by the chemical
distancel . The lower integration limitl min(r ,Nav) is de-
fined by f(l ur )50 for l ,l min(r ,Nav). For RW trails
f(l ur ) can be determined analytically, forl @r ,

f~ l ur !5A d

2p
l 21S r

Al D expF2
d

2 S r

Al D 2G . ~7!

The lower limit l min(r ,Nav) denotes the smallestl value
one can find at distancer from the origin in a set ofNav
configurations. We have found earlier thatl min(r ,Nav)
scales as@8#

l min~r ,Nav!;H r c~Nav!
21r 2, r@r c~Nav!,

r , r!r c~Nav!,
~8!

with the crossover distance

r c~Nav!511 lnNav/lnz, ~9!

andz is the coordination number of the underlying lattice.
Now we are in the position to determine the moments

^Pq(r ,t)&Nav. By substituting~4! and ~7! into ~6! we can

express^Pq(r ,t)&Nav by the first moment̂ P(r ,t)&Nav, ac-
cording to

^Pq~r ,t !&Nav;^P~rq1/4,t !&Nav. ~10!

The first moment̂P(r ,t)&Nav has been calculated recently
@8,9#. It has been found that the asymptotic regimer@R(t)

we are interested in is split into two differentr regimes that
are separated by the crossover distance
r3(Nav).R(t)r c

3/4(Nav), with

R~ t !5FL~ t !S d4D
1/2G1/2 ~11!

being proportional to the root mean square displacement of
the random walker. ForR(t)!r!r3(Nav), the integrand of
~6! shows a steep maximum and the method of steepest de-
scent is applicable to calculate the integral~6!. One obtains
@4,8#

2 ln^P~r ,t !&Nav;„r /R~ t !…4/3, R~ t !!r!r3~Nav!.
~12!

For r@r3(Nav), the integrand of~6! is peaked sharply at
l min(r ,Nav) yielding @8#

2 ln^P~r ,t !&Nav;r c~Nav!
22
„r /R~ t !…4, r@r3~Nav!.

~13!

Equations~12! and ~13! can be combined into@10#

2 ln^P~r ,t !&Nav;r3~Nav!
4/3f „r /r3~Nav!…, ~14!

with f (x)5x4/3 for x!1 and f (x)5x4 for x@1. From~10!,
~12!, and~13! we can obtain the moments^Pq(r ,t)&Nav when
substituting r by rq1/4. This yields, for r@R(t)/q1/4, the
more general scaling relation

2 ln^Pq~r ,t !&Nav;r3~Nav!
4/3f „rq1/4/r3~Nav!…. ~15!

Combining~10!, ~12!, and~13!, we obtain

^Pq~r ,t !&Nav;^P~r ,t !&Nav
t~q! ~16!

with

t~q!5H q1/3, q1!q!qc~Nav!

q, q@qc~Nav!
~17!

and the crossover values

q15@R~ t !/r #4, ~18!

qc~Nav!.r c~Nav!
3q1 , ~19!

and r c(Nav) from ~9!. By definition ~17! holds only for
rq1/4@R(t). For rq1/4!R(t), t(q) cannot be defined since
^P(r ,t)&Nav shows power law behavior forr!R(t) @9#. In

the limit of Nav→`, qc(Nav) tends to infinity and
t(q);q1/3 reduces to the known result, see~1!, in the whole
q regime aboveq1. For finiteNav, t(q) changes fromq1/3 to
q at qc(Nav) and multifractality breaks down. This transition
point from multifractal to unifractal behavior increases loga-
rithmically with the numberNav of configurations averaged.
For Nav51, r c(Nav)51 andqc(Nav51)5q1, i.e., we have
unifractal behavior in the wholeq range aboveq1. Recently
we have argued theoretically and shown by extensive nu-
merical simulations@10# that the decay of the ‘‘typical’’ av-
eragê P(r ,t)& typ[exp̂ lnP(r,t)& does not depend onNav and
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is described by Eqs.~12! and ~13! with Nav51. We can
argue~and have verified this by numerical simulations! that
also the behavior of̂Pq(r ,t)& typ[exp̂ lnPq(r,t)& is governed
by Eqs.~16!–~19! with Nav51. Accordingly Eqs.~16!–~19!
imply that the multifractal characterization forrq1/4@R(t)
depends crucially on the averaging procedure. For the typical
average, the moments show unifractal behavior, while for the
annealed average they are fully characterized by multifractal
behavior. We like to note that this typical average must be
distinguished from the more conventional ‘‘quenched’’ aver-
age, where lnPi(r,t) is averaged over all sites at distancer
and over all cluster configurations@3#. By definition, since
lnPi

q5qlnPi , the moments of the quenched average are uni-
fractal in the wholeq regime, also forq,q1. In contrast, the
typical average is obtained by first averagingPi(r ,t) within
one configuration@yielding P(r ,t)#, and then averaging
lnP(r,t) over all configurations considered. This way, the
fluctuations between different configurations are suppressed,
and the result is typical for one individual configuration.

To test our theoretical predictions, we have performed
extensive numerical simulations, employing quadruple preci-
sion for the data@11#. Figure 1 shows the moments in appro-
priately scaled form fort55000 and severalq andNav val-
ues~a! as a function ofr /R(t), ~b! as a function of the single
scaled variableq1/4r /R(t), and~c! as a function of the double
scaled variableq1/4r /r3(Nav). The results are in full quanti-
tative agreement with the theory. Figure 2 showst(q) ob-
tained from the moments at fixedr and t value for several
values ofNav. For the typical average corresponding to
Nav51, there exists only the unifractal region. ForNav@1,
the figure shows clearly the transition from multifractal to
unifractal behavior. The transition pointqc(Nav) increases
logarithmically withNav, as predicted by the theory.

The above results are rigorous for random walks on RW
trails and can be extended straightforwardly to other linear
fractals like self-avoiding walks.

III. RANDOM WALKS ON PERCOLATION
CLUSTERS

Next we apply the analogous arguments to the more com-
plicated case of random walks on percolation clusters. We
shall consider explicitly percolation ind52 (dmin.1.13,
dw.2.87), in d53 (dmin.1.37, dw.3.8) @6#, and on the
Cayley-tree (dmin52, dw56). As above, we define the
chemical distancel between two sites on the fractal as the
length of the shortest path connecting them. Figures 3 and 4
show that, as for linear fractals, the chemical distancel ~and
not the Euclidean distancer ) is the relevant physical length
scale also for percolation clusters, such that the fluctuations
of the probability density on sites with the same chemical
distancel from the origin are small. Figure 3 shows, for
fixed l andt, the histogramN(lnP) defined as the number of
sites with probability lnP between lnP and lnP1dlnP, ~a! for
a large numberNav of configurations and~b! for a single
configuration. In Fig. 4 the corresponding histograms for

FIG. 1. The logarithm of the aver-
aged moments of the probability den-
sity of random walks on RW trails in
the s.c. lattice in appropriately scaled
form at t55000 ~a! as a function of
r /R(t), ~b! as a function of the single
scaled variableq1/4r /R(t), and ~c! as
a function of the double scaled vari-
able q1/4r /r3(Nav). The different
symbols represent the numbersNav of
configurations in the averages
@Nav51 ~circles!, corresponding to
the typical moment,Nav510 ~tri-
angles!, andNav5104 ~squares!#. For
eachNav three differentq values are
plotted „q50.3 @upper curve in~a!#,
q51 @middle curve in ~a!#, and
q53.0 @lower curve in~a!#…. The two
lines in the plots represent the theo-
retical slopes 4/3 and 4. ForNav be-
low 104, averages have been per-
formed over 1000 sets ofNav

configurations~see also@11#!.

FIG. 2. Plot oft(q) versusq for random walks on RW trails in
the s.c. lattice att55000 andr /R(t).2.5 for differentNav values
@Nav51 ~circles!, Nav510 ~triangles!, andNav5104 ~squares!#. The
two lines in the plots represent the theoretical slopes 1 and 1/3.
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fixed r are plotted. By comparing Figs. 3 and 4 it is clearly
seen that the fluctuations at fixed chemical distancel from
the origin are considerably smaller than the fluctuations at
fixed Euclidean distancer . Hence we can assume that ap-
proximately all sitesi at fixed chemical distancel from the
origin have the same probability density^P(l ,t)&. In this
approximation, we have trivially, as for RW trails,

^Pq~ l ,t !&
1/q;^P~ l ,t !&. ~20!

As predicted by scaling theory,̂ P(l ,t)& scales as
^P„l ,t…&/^P(0,t)&5 f „l /L(t)…, where L(t) is the mean
chemical distance the random walker has traveled at timet
~see Fig. 5!. To test the validity of Eq.~20!, we have calcu-
lated ^Pq(l ,t)& for variousq and t values. The results~for
percolation ind52,3 and on the Cayley-tree! are shown in
Fig. 6, where we have plotted̂Pq(l ,t)&

1/q versusl /L(t)
for fixed time and threeq values. At largel values, all data
for differentq collapse, while at smallerl values slight de-
viations from~20! occur.

As can be seen from Fig. 5, at largel values the slopes of
the curves are consistent with the predictiondw /(dw2dmin)
by Havlin and Ben-Avraham@12#. At small values, however,
the slopes are consistent withdw /dmin . The crossover occurs
roughly atL(t):

2 ln^P~ l ,t !&;H „l /L~ t !…dw /dmin, l !L~ t !

„l /L~ t !…dw /~dw2dmin!, l @L~ t !.
~21!

This crossover behavior of^P(l ,t)& has been overlooked in
previous calculations of̂P(l ,t)&. We would like to note
that a similar crossover behavior has been observed earlier
for random walks on the Sierpinski-gasket@13# where l
scales linearly withr .

Using the fact that the fluctuations of the probability den-
sity on sitesi at fixed chemical distancel from the origin of
the random walk are small, for both the same and different
configurations,̂ Pq(r ,t)& can be written also for percolation
clusters as a convolutional integral between^Pq(l ,t)& and
the probabilityf(l ur ) that two sites with Euclidean distance
r are at chemical distancel from each other~see also
@4,10#!,

^Pq~r ,t !&Nav5E
l min~r ,Nav!

`

f~ l ur !^Pq~ l ,t !&dl , ~22!

FIG. 3. Plot of the histogramN(lnP) versus ln(P/P0) for perco-
lation clusters ind52 for fixed l 5100 andt52000, ~a! averaged
over 103 configurations and~b! for a single configuration.

FIG. 4. Plot of the histogramN(lnP) versus ln(P/P0) for perco-
lation clusters ind52 for fixed r570 andt52000 ~a! averaged
over 103 configurations and~b! for a single configuration.

FIG. 5. Random walks on random fractals in thechemical
space: Scaling plot of2 ln@^P(l ,t)&/^P(0,t)&# as a function of
l /L(t) for ~a! percolation clusters ind52 for t55000~circles! and
t510 000~triangles!, ~b! percolation clusters ind53 for t51000
~circles! and t55000 ~triangles!, ~c! for the Cayley-tree for
t52000~circles! andt55000~triangles!. The two lines in the plots
represent the theoretical slopes with effective exponentsdw taken at
the considered time instances. For clarity, the data in~a! and ~b!
have been multiplied by factors of 100 and 10, respectively.

FIG. 6. Random walks on random fractals: Plot of
2 ln@^Pq(l ,t)&/^P

q(0,t)&#1/q as a function ofl /L(t) for severalq
values@q50.2 ~squares!, q51 ~circles!, andq54.0 ~triangles!# for
~a! percolation clusters ind52 at t52000,~b! percolation clusters
in d53 at t51000, and~c! for the Cayley-tree att52000. For
clarity, the data in~a! and ~b! have been multiplied by factors of
100 and 10, respectively.
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where nowf(l ur ) is given by

f~ l ur !5
C1

l
S r

l 1/dminD gexpF2C2S r

l 1/dminD d̃ G ~23!

with d̃5dmin /(dmin21) and g.1.35 in d52, g.1.5 in
d53, respectively@14,15#. For fixedr , f(l ur ) has a maxi-
mum at l max(r ).r dmin. Similar to RW trails@Eqs. ~8! and
~9!#, the lower integration limitl min(r ,Nav) scales with the
numberNav of configurations according to@10#

l min~r ,Nav!;r c~Nav!
12dminr dmin, ~24!

for r above a crossover distance

r c~Nav!5~ lnz1 lnNav!/ ln~1/pc!. ~25!

Due to the crossover behavior of^P(l ,t)& @Eq. ~21!#, a scal-
ing relation for^Pq(r ,t)&Nav can only be obtained in the lim-
its r→0 and r→`. For r→0, the l values belowL(t)
dominate the integral~22! @9#, and thereforê Pq(r ,t)&Nav
satisfies the scaling relation

^Pq~r ,t !&Nav;^P~rq1/dw,t !&Nav. ~26!

For very larger values, on the other hand, only largel
values contribute, and thus

^Pq~r ,t !&Nav;^P~rq ~dw2dmin!/dwdmin,t !&Nav. ~27!

By these scaling relations, the calculation of the moments
again is reduced to a calculation of the first moment. The
situation, however, is more complex than for the RW trail,
since both scaling relations hold only in the limits of small
and larger values and deviations from them are expected in
the relevantr regime in between. In the asymptotic regime
we have@10#, in close analogy to~12! and ~13!,

2 ln^P~r ,t !&Nav

;H @r /R~ t !#dw /~dw21!, R~ t !!r!r3~Nav!,

r c~Nav!
a@r /R~ t !#dwdmin /~d w2dmin!, r@r3~Nav!,

~28!

with a5(dmin21)/(dmin /dw21), R(t);L(t)dmin, and the
crossover length

r3~Nav!.r c
~dw21!/dw~Nav!R~ t !. ~29!

For obtaining the moments we follow the procedure outlined
in the foregoing section. As in Sec. II, we are only interested
in the behavior in the asymptotic regime where the scaling
relation~27! holds. Equations~27! and~28! can be written as
^Pq(r ,t)&Nav;^P(r ,t)&Nav

t(q) , with

t~q!5H q~dw /dmin21!/~dw21!, q1!q!qc~Nav!,

q, q@qc~Nav!,
~30!

and the crossover values

q1.@R~ t !/r #dwdmin /~dw2dmin!

FIG. 7. The logarithm of the aver-
aged moments of the probability den-
sity of random walks on percolation
clusters ind53 at t51000 ~a! as a
function of r /R(t), ~b! as a function
of qdwdmin /(dw2dmin)r /R(t), and ~c! as
a function of qdwdmin /(dw2dmin)r /
r3(Nav) for Nav51 ~circles! corre-
sponding to the typical moment and
Nav5125 ~triangles!. Three different
q values are plotted„q50.2 @upper
curve in ~a!#, q51 @middle curve in
~a!#, andq54.0 @lower curve in~a!#….
The two lines in the plots represent
the theoretical slopes with an effec-
tive exponentdw taken at the consid-
ered timet51000.

FIG. 8. Plot oft(q) versusq for random walks on percolation
clusters ind53 for t51000,r /R(t).3.5 ~a! andr /R(t).9 ~b! and
different Nav values @Nav51 ~circles! and Nav5125 ~triangles!#.
The two lines represent the theoretical slopes with an effective ex-
ponentdw taken at the considered timet51000.
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and

qc~Nav!.r c~Nav!
~dw21!/~dw /dmin21!q1.

Equation~30! predicts a similar behavior as for random
walks on RW trails. Again there exists a criticalq value
qc(Nav) that increases logarithmically withNav. Below
qc(Nav), we have multifractal behavior, aboveqc(Nav), we
have unifractal behavior. In contrast to the situation on the
RW trail, however, the multifractality does not vanish for the
typical average (Nav51), sincer c(1).1 here. Figures 7 and
8 show our numerical results for site percolation ind53. In
Fig. 7 the moments are plotted fort51000 and threeq and
two Nav values in appropriately scaled form~a! as a function
of r /R(t), ~b! as a function ofqdwdmin /(dw2dmin)r /R(t), and
~c! as a function ofqdwdmin /(dw2dmin)r /r3(N av). As for the
RW trail, the results are in full quantitative agreement with
the theory. Figure 8 showst(q) obtained from the moments
at fixed r and t value for the typical average (Nav51) and
for Nav5125. The figure shows clearly the increase of the
transition pointqc(Nav) with Nav, which separates the mul-
tifractal from the unifractal regime.

IV. LOCALIZED VIBRATIONAL EXCITATIONS IN
RANDOM FRACTALS

First we discuss localized vibrational excitations in a lin-
ear random fractal. We consider a linear chain of masses
M . Nearest neighbor masses are coupled by springs of force
constantsf . At a single site of the chain considered as the
origin, a smaller massm51,M is located. The masses per-
form longitudinal vibrations around their equilibrium posi-
tions. At frequencyv5A(4 f /M ) a localized excitation cen-
tered around the origin occurs. The displacements of the
masses at chemical distancel from the origin are given by
~see, e.g.,@16#!

u~ l !5u0~21! l C~ l ,v!exp~2 ivt !, ~31!

where the normalized vibrational amplitudes decay as

C~ l ,v!;exp„2l /L l ~v!…. ~32!

Next we consider that this chain forms a RW trail. We are
interested in the behavior of̂C(r ,v)&Nav, averaged over

Nav configurations and the corresponding moments
^Cq(r ,v)&Nav. The problem of findinĝCq(r ,v)&Nav is com-
pletely analogous to the problem of finding^Pq(r ,t)&Nav on
the RW trail. ReplacingP(l ,t) in ~3! by C(l ,v) leads to
the corresponding equation for^Cq(r ,v)&Nav. It is easy to
verify that Eq.~10! is now substituted by

^Cq~r ,v!&Nav;^C~rq1/2,v!&Nav. ~33!

In full analogy to ^P(r ,t)&Nav @Eqs. ~12! and ~13!#, the as-

ymptotic regime of̂ C(r ,v)&Nav is split into two parts@8#,

FIG. 9. The logarithm of the aver-
aged moments of the amplitudes of
localized vibrational excitations on
RW trails in the s.c. lattice in appro-
priately scaled form forL l (v).12
~a! as a function ofr /LR(v), ~b! as a
function of the single scaled variable
q1/2r /LR(v), and~c! as a function of
the double scaled variable
q1/2r /r3(Nav). The different symbols
represent the numbersNav of configu-
rations in the averages@Nav51
~circles!, Nav510 ~triangles!, and
Nav5104 ~squares!#. For eachNav

three differentq values are plotted
„q50.3 @upper curve in~a!#, q51
@middle curve in ~a!#, and q53.0
@lower curve in~a!#…. The two lines in
the plots represent the two theoretical
slopes 1 and 2. ForNav below 104,
averages have been performed over
1000 sets ofNav configurations~see
also @11#!.

FIG. 10. Plot oft(q) versusq for localized vibrational excita-
tions on RW trails in the s.c. lattice forL l (v).12 and
r /LR(v).4 for Nav51 ~circles!, Nav510 ~triangles!, and
Nav5104 ~squares!. The two lines in the plots represent the theo-
retical slopes 1 and 1/2.
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2 ln^C~r ,v!&Nav

;H @r /LR~v!#, LR~v!!r!r3~Nav!

r c
21~Nav!@r /LR~v!#2, r@r3~Nav!,

~34!

with LR(v)5AL l (v)d/2, r3(Nav)5LR(v)r c(Nav), and
r c(Nav) from ~9!. Combining ~33! and ~34! we obtain
^Cq(r ,v)&Nav;^C(r ,v)&Nav

t(q) , with

t~q!5H q1/2, q1!q!qc~Nav!,

q, q@qc~Nav!, ~35!

and the crossover valuesq1.@LR(v)/r #
2 and qc(Nav)

.r c(Nav)
2q1.

Figures 9 and 10 show our numerical result for localized
vibrational excitations on RW structures with a single defect,
employing quadruple precision for the data. In Fig. 9 the
moments in appropriately scaled form forL l (v).12 and
severalq and Nav values are plotted~a! as a function of
r /LR(v), ~b! as a function of the single scaled variable
q1/2r /LR(v), and~c! as a function of the double scaled vari-
able q1/2r /r3(Nav). As for random walks on the RW trail,
the results are in full quantitative agreement with the theory.
Figure 10 showst(q) obtained from the moments at fixed
r andL l (v) value for several values ofNav. Again, for the
typical average corresponding toNav51, there exists only
the unifractal region. ForNav@1, the transition point
qc(Nav), separating the multifractal from the unifractal re-
gime, is clearly seen and increases logarithmically with
Nav.

The considerations for the localized excitations on the
RW trail can be extended straightforwardly to fractons on

percolation clusters, if weassume~as has been done before
by Bundeet al. @3#! that the fracton amplitudes are mainly
determined by their chemical distancesl from the localiza-
tion center and decay asymptotically as

C~ l ,v!;exp„2l /L l ~v!… ~36!

as in the RW trail. Using this striking assumption we can
derive, as in the preceding sections before, a scaling relation
between̂ Cq(r ,v)&Nav and^C(r ,v)&Nav, which yields in the
asymptotic regime of interest,

t~q!5H q1/dmin, q1!q!qc~Nav!

q, q@qc~Nav!,
~37!

with q15@LR(v)/r #
dmin and qc(Nav)5r c(Nav)

dminq1. Here,
LR(v);L l (v)

dmin represents the spatial localization length.
As before, the criticalq valueqc(Nav) separating the multi-
fractal from the unifractal regime increases logarithmically
with Nav. In the limit of Nav→` tendsqc(Nav)→`, and
only the multifractal regime remains. ForNav51, corre-
sponding to the typical average,qc(Nav) has the minimum
value. The numerical observation ofqc(Nav), however, even
for Nav51, is a difficult numerical task since in order to
detect it unambigously~in d52), distances of the order of
10 localization lengths from the localization center must be
considered.
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