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Multifractal features of random walks and localized vibrational excitations on random fractals:
Dependence on the averaging procedure

Julia Drayer*? and Armin Bundé
Ynstitut fir Theoretische Physik, Justus-Liebig-UniversiGiessen, D-35392 Giessen, Germany
2], Institut fir Theoretische Physik, Universttalamburg, D-20355 Hamburg, Germany
(Received 24 June 1996

We show explicitly that the range of multifractality of random walks and localized vibrational excitations on
random fractals depends crucially on the nunidgyof configurations involved in the averaging procedure. By
studying analytically and numerically the momegis,(r ,t)},\,av of the probability density of random walks on
random walk trails and percolation clusters at criticality, averaged Bygiconfigurations, we find that for
fixed distance and timet multifractality occurs only foig values below a critical valug.(N,,) that increases
logarithmically with N,,. We predict similar features for the moments of the amplitu(d]?g(r,w)),\,av of
localized vibrational excitation$S1063-651X96)08910-4

PACS numbd(s): 05.40:+j, 63.50+x

I. INTRODUCTION tional amplitudes of localized vibrational excitatiofi$rac-
tons”) on percolation clusterfs3].

In recent years, it has been shown that several physical Here we show that in both cases the hierarchy of expo-
guantities describing dynamical properties of random sysnentst(q) depends explicitly on the number of configura-
tems do not obey the conventional scaling laws. Recent exions taken into account in the averages. There exists a criti-
amples are the electronic eigenstates near the center of tisal g value g.(N,) that increases logarithmically with
Landau band1,2], the amplitudes of localized vibrational N,. Below q.(N,), we find multifractal behavior with
excitations[3] as well as the probability density of random 7(q) from (1). Above q.(N,,), we find unifractal behavior,
walks[4] on percolation clusters, and the voltage drops on a.e., 7(q)=q. Our considerations include also the case of
bond percolation network5]. All these quantities have in ‘“typical’ averages, which formally correspond td,,=1,
common that they are characterized by a very broad distriand therefore are described by our analytical results for
bution, such that their moments cannot be described by K,,=1.
single exponent but an infinite hierarchy of exponents is The paper is divided into three parts. In the first §Sec.
needed to characterize them. This feature is called multifracH ) we discuss random walks on linear fractal structures gen-
tality (for reviews see, e.g[6]). erated by random walk®kW trails) and test numerically the

In this paper we mainly concentrate on random walks oranalytic results, which are rigorous in this case. In Sec. lll
random fractals and study both analytically and numericallywe extend the approach to random walks on percolation clus-
how theaveraging procedur@fluences the multifractal fea- ters and present numerical simulations tb2,3, and the
tures. We investigate the spatial distribution of random walksCayley-tree. In Sec. 1V, finally, we discuss how our results
on the random fractals by calculating tlggth moment for random walks on random fractals can be applied to lo-
(PA(r,t)),, of the probability to find the random walker, calized vibrational excitations on random fractals.

after t time steps, on a site at distancefrom its starting
point. The averagé)Nav is performed ovemN,, configura-

tions.

Previous work on the subjeft] did not consider the role The trace of a random walk in high-dimensional lattices
of the averaging procedure. It was suggested that, apart froeonstitutes the simplest random fractal structure with
very small and very largg values,(P9(r,t))~(P(r,t))"®  d,;,=2 andd,,=4 (see, e.g.[6,7]). Although the trace can

Il. RANDOM WALKS ON RW TRAILS

with intersect with itself in space, only those sites of the trace are
considered as connected that have been created sequentially
(dy/dmin) —1 by the random walk. This way the RW trail can be viewed as
m(q)~q” and y= m<l- (1) Z'topologically linear structure.

We consider a random walker on this structure. The prob-
Here, d,, describes how the root mean square displacemerbilities Pi(r,t) to find a random walkefaftert time steps
of the random walke(R(t))~tY%w changes with time. The ©On sitesi at distancer from the starting point of the walk
exponentd,,, is called fractal dimension of the minimum may have very different values. Tla¢gh moment, for a given
path and describes how the lengthof the shortest path ~ configuration, is defined by
connecting two points on the fractéichemical” distance

scales with the Euclidean distance between them, N(T)
</(r)>~15dd@n. Similar  multifractal  features  with Py(r,t)= 1 2 PY(r 1), ©)
7(q)~q~“min were obtained for the moments of the vibra- N(r) =
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where N(r) is the number of sites at distancefrom the
origin of the walk. Along the trail, in “chemical” space, the
probability of finding the random walker on a siteat
“chemical” distance/” from the origin is(trivially ) indepen-

dent of the considered trail configuration in space and for

t>/ given by a Gaussian,

P(/D~exd —(/IL())’], LM=V2t. (3
Hence the moments, in chemicélspace, are simply
Pq(/ ) ~exd —q(/IL(1))*]=exd — (/IL4(1)?],
Lo(H=L()/a. @

Assuming that among thdl(r) sites at spatial distance
from the origin there ar&l(/,r) sites at chemical distance

/, (2) can be written as a sum over sites having the sam

/ values[4,8],

Py(Z 1)

N(/,r)
N ©

Pq(r,t)=2/

Averaging overN,, configurations and replacing the sum

over/ by an integral yields the desired relation between the

moments of the probability densitiesiirand in/” space(see
also[8]),

©

(Pq(r D)y, = f

/min(r:Nay

S(/NP(/,)d/.  (6)

Here ¢(/|r) is the probability that two sites at Euclidean

distancer from each other are separated by the chemical

distance/. The lower integration limit/,,(r,Na,) is de-
fined by ¢(/|r)=0 for /</min(r,Na). For RW trails
¢(/|r) can be determined analytically, fat>r,

The lower limit / in(r,N,) denotes the smallest value
one can find at distance from the origin in a set olN,,
configurations. We have found earlier that,,(r,Na)
scales a$8]

(@)

/N re(Nay 2, r>r(Ng), ®
TR r<re(Nay),
with the crossover distance
ro(Na)=21+InN,,/Inz, 9

andz is the coordination number of the underlying lattice.
Now we are in the position to determine the moment

(Pq(r,t)>NaV. By substituting(4) and (7) into (6) we can

express( Pq(r,t)>NaV by the first moment(P(r,t))NaV, ac-

cording to
(Pq(r )N~ (P(ra*™ ), (10

The first momentP(r,t))y_ has been calculated recently
[8,9]. It has been found that the asymptotic regin¥eR(t)
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we are interested in is split into two differentregimes that
are separated by the crossover distance
r«(Na) =R()r%(Ng), with

ol

being proportional to the root mean square displacement of
the random walker. FoR(t)<r<r(N,,), the integrand of

(6) shows a steep maximum and the method of steepest de-
scent is applicable to calculate the integi®l. One obtains
[4.8]

12112

R(t)= (11

—In(P(r,H)n, ~ /RO, RIO<r<ry(Ng).
(12)

For r>r(N,,), the integrand of(6) is peaked sharply at
% min1:Nay) yielding [8]

—IN(P(r D), ~To(Na) 2R, 131 (N
(13

Equations(12) and(13) can be combined intfpl0]

—IN(P(r, )N, (Na) P (/T (NQ), (14

with f(x)=x*?for x<1 andf(x)=x* for x>1. From(10),
(12), and(13) we can obtain the momer’n(t@q(r,t»,\,av when
substitutingr by rq¥% This vyields, forr>R(t)/q*4 the
more general scaling relation

—I(Pg(r )N, ~ T« (Na) a1 1 (Na).  (15)

Combining(10), (12), and(13), we obtain

(Pq(r t)n,,~(P(r, )Y (16)
with
3 <qg<a.(N
and the crossover values
g =[R(D/r]%, (18)
Ae(Nay) =T c(Ngy) s, (19

and r(N,,) from (9). By definition (17) holds only for
rq¥4>R(t). For rq¥*<R(t), 7(q) cannot be defined since
(P(r,t))Nav shows power law behavior far<R(t) [9]. In

the limit of N, —%, g.(N,) tends to infinity and
7(q) ~q*"° reduces to the known result, s&@, in the whole

q regime abovey,. For finiteN,,, 7(q) changes frong'to

g atqg.(N,,) and multifractality breaks down. This transition
point from multifractal to unifractal behavior increases loga-
rithmically with the numbelN,, of configurations averaged.
For N,,=1, r.(N,)=1 andqg.(N,=1)=q;,, i.e., we have
unifractal behavior in the wholg range abovey;. Recently
we have argued theoretically and shown by extensive nu-
merical simulationg10] that the decay of the “typical” av-
erage(P(r,t))y,=expInP(r,t)) does not depend dN,, and
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FIG. 1. The logarithm of the aver-
aged moments of the probability den-
sity of random walks on RW trails in
the s.c. lattice in appropriately scaled
form att=5000 (a) as a function of
r/R(t), (b) as a function of the single
scaled variable*/R(t), and(c) as
a function of the double scaled vari-
1 able g¥r/r (N,). The different
symbols represent the numbets, of
3 configurations in the averages
[No=1 (circles, corresponding to
3 the typical moment,N,,~=10 (tri-
angles, andN,,=10* (square}. For
3 eachN,, three differentq values are
] plotted (q= 0.3 [upper curve in(a)],
T+ R — ; I — g=1 [middle curve in (a)], and

10 10 10 10 10 10 10" 10 10 g=3.0llower curve in@]. The two
ines in the plots represent the theo-
r/R(t) ¢ r/R(t) g r/rs retical slopes 4/3 and 4. Fdi,, be-
low 10% averages have been per-
formed over 1000 sets ofN,,
configurationgsee alsd11)).
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is described by Eqs(12) and (13) with N,,=1. We can lll. RANDOM WALKS ON PERCOLATION
argue(and have verified this by numerical simulatiptisat CLUSTERS

also the behavior ofP(r,t))y,=expInPy(r.t)) is governed Next we apply the analogous arguments to the more com-
by Egs.(16)—(19) with Na,=1. Accordingly Eqs(16)-(19)  plicated case of random walks on percolation clusters. We
imply that the multifractal characterization fog™>R(t)  shall consider explicitly percolation idl=2 (d;,~1.13,
depends crucially on the averaging procedure. For the typical ,~2.87), ind=3 (d,,,=1.37, d,,=3.8) [6], and on the
average, the moments show unifractal behavior, while for thecayley-tree @,,,=2, d,=6). As above, we define the
annealed average they are fully characterized by multifractathemical distance” between two sites on the fractal as the
behavior. We like to note that this typical average must bdength of the shortest path connecting them. Figures 3 and 4
distinguished from the more conventional “quenched” aver-show that, as for linear fractals, the chemical distafidand

age, where IR;(r,t) is averaged over all sites at distance not the Euclidean distanag is the relevant physical length
and over all cluster configuration8]. By definition, since scale also for percolation clusters, such that the fluctuations
InP=qInP;, the moments of the quenched average are uniof the probability density on sites with the same chemical
fractal in the wholeg regime, also fog<g;. In contrast, the ~distance/” from the origin are small. Figure 3 shows, for
typical average is obtained by first averagigr,t) within f|?<ed /.andt, the h_lstogranN(InP) defined as the number of
one configuration[yielding P(r,t)], and then averaging sites with probability I bet\_/veen _Irﬁ’ and IrP+dInP, (a_) for
InP(r,t) over all configurations considered. This way, the? Iar_ge m_'mbe'NaV_Of configurations an(_ib) fo_r a single
fluctuations between different configurations are suppresse&?nf'gurat'on' In Fig. 4 the corresponding histograms for
and the result is typical for one individual configuration.

To test our theoretical predictions, we have performed
extensive numerical simulations, employing quadruple preci- @) 4d E
sion for the datdl11]. Figure 1 shows the moments in appro-
priately scaled form fot=5000 and severaj andN,, val-
ues(a) as a function of /R(t), (b) as a function of the single 10 £ 3
scaled variablg 4 /R(t), and(c) as a function of the double : A
scaled variable**r/r (N,,). The results are in full quanti- ‘
tative agreement with the theory. Figure 2 shox(g) ob- 10" F 5
tained from the moments at fixadandt value for several Pe ]
values of N,,. For the typical average corresponding to A
N,=1, there exists only the unifractal region. Rgg>1, 1 0
the figure shows clearly the transition from multifractal to
unifractal behavior. The transition poinf,(N,,) increases

logarithmically withN,,, as predicted by the theory. FIG. 2. Plot ofr(q) versusq for random walks on RW trails in

The above results are rigorogs for random walks on RWhe s.c. lattice at=5000 andr/R(t)=2.5 for differentN,, values
trails and can be extended straightforwardly to other lineayN,,=1 (circles, N,,= 10 (triangles, andN,,= 10* (square¥. The

fractals like self-avoiding walks. two lines in the plots represent the theoretical slopes 1 and 1/3.
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FIG. 3. Plot of the histogrami(InP) versus InP/Py) for perco- o/L(t)

lation clusters ird=2 for fixed /=100 andt= 2000, (a) averaged

over 1¢ configurations andb) for a single configuration. FIG. 5. Random walks on random fractals in tbeemical

. ) ) o space: Scaling plot of-In[(P(/,t))/(P(0t))] as a function of
fixedr are plotted. By comparing Figs. 3 and 4 it is clearly /| (1) for (a) percolation clusters id=2 for t=5000(circles and

seen that the fluctuations at fixed chemical d|staﬁ(je0m t=10 Ooo(triang|e3’ (b) perco]a’[ion clusters =3 for t=1000
the origin are considerably smaller than the fluctuations atcircles and t=5000 (triangles, (c) for the Cayley-tree for
fixed Euclidean distance. Hence we can assume that ap- t=2000(circles andt=5000(triangles. The two lines in the plots
proximately all sites at fixed chemical distanceé from the  represent the theoretical slopes with effective expongptsiken at
origin have the same probability densif?(/,t)). In this  the considered time instances. For clarity, the datéajnand (b)

approximation, we have trivially, as for RW trails, have been multiplied by factors of 100 and 10, respectively.
(P(/ ,0YYa~(P(/,1)). (200  This crossover behavior ¢P(~,t)) has been overlooked in

previous calculations ofP(/,t)). We would like to note
As predicted by scaling theory(P(/,t)) scales as that a similar crossover behavior has been observed earlier
(P(Z,)O){P(O}t)y=f(//L(t)), where L(t) is the mean for random walks on the Sierpinski-gasket3] where /
chemical distance the random walker has traveled at time scales linearly witfr.
(see Fig. 5. To test the validity of Eq(20), we have calcu- Using the fact that the fluctuations of the probability den-
lated (P4(~',t)) for variousq andt values. The resultéfor  sity on sites at fixed chemical distancé from the origin of
percolation ind=2,3 and on the Cayley-trgare shown in the random walk are small, for both the same and different
Fig. 6, where we have plottetP,(/,t))@ versus//L(t)  configurations{Pq(r,t)) can be written also for percolation
for fixed time and threg values. At large” values, all data  clusters as a convolutional integral betwedh,(/,t)) and
for differentq collapse, while at smaller values slight de- the probability(/|r) that two sites with Euclidean distance
viations from(20) occur. r are at chemical distancg from each other(see also

As can be seen from Fig. 5, at largevalues the slopes of [4,10]),

the curves are consistent with the predictayy/(d,,— dmin) .
by Havlin and Ben-Avraharfil2]. At small values, however, (Pq(r,H)n :f (/P77 (22)
the slopes are consistent witly, /d,,i,. The crossover occurs i
roughly atL (t):

min(TNay

(1LY, /<L (1)
—In(P(~/,1))~ (/IL()3/ = dmin) /| (). :
(21 ]
10 10
1k E £/L(Y)
0:..... T TS TS T S it FIG. 6. Random walks on random fractals: Plot of
25 50 75 100 125 150 175 —In[(Py(~,1))/(P(0,t))]* as a function of//L(t) for severalq
—In(P/Fy) values[g=0.2 (squares q=1 (circles, andg=4.0 (triangles] for

(a) percolation clusters id=2 att=2000,(b) percolation clusters
FIG. 4. Plot of the histograrN(InP) versus InP/Py) for perco-  in d=3 at t=1000, and(c) for the Cayley-tree at=2000. For
lation clusters ind=2 for fixed r=70 andt=2000 (a) averaged clarity, the data in(@) and (b) have been multiplied by factors of
over 1¢ configurations andb) for a single configuration. 100 and 10, respectively.
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FIG. 7. The logarithm of the aver-

Py(r,t P, .
—In (M) A (MJL) aged moments of the probability den-
(0,0, 40 8))w,, sity of random walks on percolation

clusters ind=3 att=1000(a) as a
function of r/R(t), (b) as a function
of gwdmin/(dw=dmiyr /R(t), and (c) as
a function of q%dmin/(dw=dmin)y/
r«(Na) for No=1 (circles corre-
3 sponding to the typical moment and
N,,=125 (triangleg. Three different
g values are plottedq=0.2 [upper
curve in (@], =1 [middle curve in
(@], andg=4.0[lower curve in(a)]).
The two lines in the plots represent

10" 1 10 10 162 10" the theoretical slopes with an effec-
due e —do tive exponend,, taken at the consid-
‘ hy i (o= ) Ay (A —inin) w
r/R(t) g r/R(t) q /T ered timet=1000.
where nowg(/|r) is given by —In{P(r,t))n
av
e 1|9 c e [F/R() [ D), R()<r <1 (Ngy),
$(/IN="| Zr| eH ~Co| Zza| | 2 "o(Na) TR TS0, 120 (Na),
28

with 8=dyn/(dmin—1) and g=1.35 in d=2, g=1.5 in  with a=(dmin—1)/(dmin/dw—1), R(t)~L(t)%min, and the
d=3, respectively14,15. For fixedr, ¢(/|r) has a maxi- crossover length
mum at/ ma(r)=r%min. Similar to RW trails[Egs. (8) and
(9)], the lower integration limit/ ,(r,N,,) scales with the Py (N =r W™ V%N R(). (29)
numberN,, of configurations according td.0]
For obtaining the moments we follow the procedure outlined
/(T s Nagy) ~ F o Nigy) L~ i A, (24) in the foregoing section. As in Sec. Il, we are only interested
in the behavior in the asymptotic regime where the scaling

relation(27) holds. Equation$27) and(28) can be written as
for r above a crossover distance (Pq(r.H))n ~(P(r, )@ with
av av

ro(Ny) =(Inz+InN,,)/In(1/p,). (25) q'dw/dmin=D/(dw=1) " g, <q<qc(Ny),

_ 30
=g, 40N, (30

Due to the crossover behavior (#(/,t)) [Eq. (21)], a scal-

ing relation for( Pq(r,t)>Nav can only be obtained in the lim- and the crossover values

its r—0 andr—c. For r—0, the / values belowL(t) B
dominate the integra(22) [9], and therefore(PI(r,t))n,_, Gy =[R(t)/r ] %wmin/ (= Cmin
satisfies the scaling relation

(PI(r,t)), ~(P(rq¥w,t))y (26)

For very larger values, on the other hand, only large
values contribute, and thus

(PI(r D), ~(P(rq (@ dm/udmin )~ (27)

0 1
0 10

10 10 10 16 1
By these scaling relations, the calculation of the moments q q
again is reduced to a calculation of the first moment. The

situation, however, is more complex than for the RW trail, k|G, 8. Plot of r(q) versusq for random walks on percolation
since both scaling relations hold only in the limits of small clysters ind=3 for t=1000,r/R(t)=3.5(a) andr/R(t)=9 (b) and
and larger values and deviations from them are expected ingifferent N, values[N,,=1 (circles and N,,=125 (triangles].

the relevantr regime in between. In the asymptotic regime The two lines represent the theoretical slopes with an effective ex-
we have[10], in close analogy t412) and (13), ponentd,, taken at the considered tinte=1000.
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FIG. 9. The logarithm of the aver-
aged moments of the amplitudes of
localized vibrational excitations on

(T, (r,w)) RW trails in the s.c. lattice in appro-
—r;t ln( EAEK Na) priately scaled form forA ,(w)=12
(a) as a function of /Ax(w), (b) as a
' ' T function of the single scaled variable
(©) qY%r/Ag(w), and(c) as a function of
the double scaled variable
qY?r/r (N,). The different symbols
] represent the numbebs,, of configu-
El3 3 rations in the averagegN,=1
] (circles, N,=10 (triangles, and
N, =10" (squarey. For eachN,,
3 three differentq values are plotted
] ] (q=0.3 [upper curve in(@], g=1
: e — E— ' ' [middle curve in (a)], and q=3.0
o 16 10 10 16 10 10 16 [lower curve in(@]). The two lines in
the plots represent the two theoretical
slopes 1 and 2. FoN,, below 1¢,
averages have been performed over
1000 sets ofN,, configurations(see
also[11]).

and where the normalized vibrational amplitudes decay as
Ge(Nay) = o(Ngy) O™/ (w/dmin =1, V(7 w0)~exp(— /1A (). (32)

Equation(30) predicts a similar behavior as for random Next we consider that this chain forms a RW trail. We are
walks on RW trails. Again there exists a criticgl value ~ interested in the behavior of¥(r,w))y_, averaged over
dc(Nga) that increases logarithmically witiN,,. Below N, configurations and the corresponding moments
d.(Nay), we have multifractal behavior, aboeg(N,,), we (\Ifq(r,w)>,\,av. The problem of ﬁndingllfq(r,co»Nav is com-
have unifractal behavior. In contrast to the situation on theyjetely analogous to the problem of findik@q(r,t)),, on
RW trail, however, the multifractality does not vanish for the the RW trail. Replacing®(/t) in (3) by W(/,w) leads to

typical averagell,,= 1), sincer.(1)>1 here. Figures 7 and ; : /
8 show our numerical results for site percolatiordia 3. In the'correspondmg'equatmn er_Pq(r’w»NaV' Itis easy to
verify that Eqg.(10) is now substituted by

Fig. 7 the moments are plotted for 1000 and threg and
two N, values in appropriately scaled forf@) as a function
of r/R(t), (b) as a function ofgdwdmin/(dw~dmin)y /R(t), and (Wq(r,0)n, ~(¥(ra*%m)n,, (33
(c) as a function ofgdwdmin/(dw=dmiy/r (N ,). As for the

RW trail, the results are in full quantitative agreement with!n full analogy to(P(r.t))y_ [Egs.(12) and (13)], the as-
the theory. Figure 8 shows(q) obtained from the moments ymptotic regime 01‘<\If(r,w)>Nav is split into two partd8],
at fixedr andt value for the typical averageNi,=1) and

for N,,=125. The figure shows clearly the increase of the Ty
transition pointg.(N,,) with N,,, which separates the mul- 9) 4d b 4
tifractal from the unifractal regime. ]

IV. LOCALIZED VIBRATIONAL EXCITATIONS IN oL 4
RANDOM FRACTALS ; ]

First we discuss localized vibrational excitations in a lin-
ear random fractal. We consider a linear chain of masses 16' F 3
M. Nearest neighbor masses are coupled by springs of force * ]
constantsf. At a single site of the chain considered as the A
origin, a smaller massy=1<M s located. The masses per- 1 0
form longitudinal vibrations around their equilibrium posi-
tions. At frequencyw = /(4f/M) a localized excitation cen-
tered around the origin occurs. The displacements of the g, 10. Plot ofr(q) versusq for localized vibrational excita-
masses at chemical distancefrom the origin are given by tions on RW trails in the s.c. lattice for\, (w)=12 and
(see, e.g.[16]) rIAg(w)=4 for N,=1 (circles, N,=10 (triangles, and

N,.,=10* (squares The two lines in the plots represent the theo-
u(/)=ug(—1)"V(/,w)exp —iwt), (31)  retical slopes 1 and 1/2.
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=In(¥(r,w))n percolation clusters, if wassumegas has been done before
a by Bundeet al. [3]) that the fracton amplitudes are mainly
[r/Ar(@)],  Ar(@)<r<ry(Ng) determined by their chemical distancésfrom the localiza-

~{ (34)  tion center and decay asymptotically as
re ‘(Na)[H/AR(0)1% 1315 (Nay),

with Ag(w)= VA (@)d72, r(Na)=Ag(@)re(Na), and V(7 w)~exp(= /1A () (36)
ro(N,) from (9). Combining (33) and (34) we obtain
(W (r,0))n. ~(¥(r,w))d?D with as in the RW trail. Using this striking assumption we can
a av av derive, as in the preceding sections before, a scaling relation
g2, gq;<q<q.(N,), betweer‘(‘lfq(r,w))Nav and(‘lf(r,w)>Nav, which yields in the
(q)= 4 g>qu(Ny) (35)  asymptotic regime of interest,
1 C av/s
1/dmin, < < N

and the crossover valueg;=[Ag(w)/r]? and g.(N,y) Q)= a A:<q<dc(Nay) (37)
:rc(Nav)qul d, q>QC(Nav):

Figures 9 and 10 show our numerical result for localized
vibrational excitations on RW structures with a single defectwith q,=[Ag(w)/r]%in and g¢(Nay) =r(Ng)ming;. Here,
employing quadruple precision for the data. In Fig. 9 theAg(w)~ A ()% represents the spatial localization length.
moments in appropriately scaled form fdr,(w)=12 and As before, the criticat] valueq.(N,,) separating the multi-
severalq and N,, values are plotteda) as a function of fractal from the unifractal regime increases logarithmically
r/Agr(w), (b) as a function of the single scaled variable with N,,. In the limit of N,,— tendsq.(N,)—, and
qY%r/Ar(w), and(c) as a function of the double scaled vari- only the multifractal regime remains. Fd,~1, corre-
able q¥a/r . (N,,). As for random walks on the RW trail, sponding to the typical averagg.(N,,) has the minimum
the results are in full quantitative agreement with the theoryyalue. The numerical observation @f(N,,), however, even
Figure 10 showsr(q) obtained from the moments at fixed for N, =1, is a difficult numerical task since in order to
r andA ,(w) value for several values ™,,. Again, for the  detect it unambigouslyin d=2), distances of the order of
typical average corresponding i,,=1, there exists only 10 localization lengths from the localization center must be
the unifractal region. ForN,>1, the transition point considered.
dc.(N,), separating the multifractal from the unifractal re-
Elime, is clearly seen and increases logarithmically with ACKNOWLEDGMENTS
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